Using Modeling to Predict Medical Requirements For Special Operations Missions Martin Hill Ralph Nix Curt Hopkins Paula Konoske Gerry Pang #### Naval Health Research Center #### Document No. 08-91 The views expressed in this article are those of the authors and do not necessarily reflect the official policy or position of the Department of the Navy, Department of Defense, nor the U.S. Government. Approved for public release; distribution is unlimited. This research has been conducted in compliance with all applicable federal regulations governing the protection of human subjects in research. Naval Health Research Center 140 Sylvester Rd. San Diego, California 92106-3521 ### Using Modeling to Predict Medical Requirements For Special Operations Missions Martin Hill Ralph Nix Curt Hopkins Paula Konoske Gerry Pang Naval Health Research Center Medical Modeling and Simulation Department 140 Sylvester Rd San Diego, CA 92106-3521 Technical Document No. 08-9I was supported by the Air Force Medical Logistics Office, Fort Detrick, MD, under Work Unit No. 63706N-M0095-60334. The views expressed in this article are those of the authors and do not reflect the official policy or position of the Department of the Navy, Department of Defense, or the U.S. Government. Approved for public release; distribution is unlimited. This research has been conducted incompliance with all applicable federal regulations governing the protection of human subjects in research. #### Abstract Background: The objective of this study was to show the benefits of modeling clinical supply requirements for Special Operations missions by providing an analysis and validation of the Air Force Special Operations Command (AFSOC) Rapid Response Deployment Kit (RRDK) Allowance Standard. Method: The Naval Health Research Center (NHRC) method of modeling clinical requirements was used to analyze RRDK needs. Investigators studied the operational requirements for the RRDK, and met with RRDK subject matter experts (SMEs) to determine the type of patient conditions care providers routinely encounter while deployed, as well as the type of clinical tasks they perform to treat those conditions. A model was then built using the SME input. A patient stream was developed reflecting the types and quantities of injuries and illnesses usually experienced by Special Operations Forces, and applied to the AFSOC model. Results: This study created a baseline for modeling and analyzing the RRDK Allowance Standard, and provided greater visibility for standardizing the AS within AFSOC and the Air Force, as well as with the Special Operations Commands of other branches of the military. The resulting quantities determined by the NHRC model lowered the cost of the RRDK by more than \$10,000, along with a minor drop in cube. The study also identified several instances of multiple National Stock Numbers being used to order the same medication or supply, adding unnecessary cost and additional work for logisticians. #### Introduction Special Operations Forces (SOF) have become the "tip of the spear" in the global war on terrorism. From Iraq to Afghanistan and in many small, mostly unheard of conflicts in between, commandos from the joint U.S. Special Operations Command (USSOCOM) are engaged in unconventional operations to prevent extremists from gaining footholds in countries where they can build an operational base, as Al Qaeda did in Afghanistan in the 1990s. Special Operations missions fall into nine categories. Direction action missions are shortduration, small-scale offensive actions in hostile or politically sensitive areas. Special reconnaissance missions involve covert reconnaissance or surveillance operations. Foreign internal defense missions involve training a friendly country's military or security forces. Unconventional warfare missions involve a broad spectrum of military and paramilitary operations, and are usually of long duration. Counterterrorism missions include offensive actions taken to prevent, deter, preempt, or respond to terrorism. Weapons of mass destruction (WMDs) counterproliferation missions are taken to locate, seize, destroy, render safe, capture, or recover WMDs. Civil affairs operations are aimed at winning "hearts and minds" in foreign territory. Psychological operations involve actions taken to manipulate the behavior of a population, government, or military force. Information operations involve adversely affecting the information systems of an adversary.¹ Many of these missions are joint operations, using SOF from the Army, Navy, Marine Corps, and Air Force, working under the aegis of the U.S. Special Operations Command. In most cases, these missions are accomplished with little or no publicity. The U.S. Air Force contribution to these joint operations includes specialized cargo, transport, and attack aircraft squadrons, highly trained forward air controllers, combat weathermen, and "parajumpers," or combat rescue specialists, who are assigned to the Air Force Special Operations Command (AFSOC), which operates as part of USSOCOM.² Providing health care to AFSOC and USSOCOM operators is a special cadre of Air Force physicians, physician assistants, nurses, and independent duty medical technicians that specializes in Special Operations medicine. Unlike their colleagues in the rest of the Air Force, who provide support in the continuum of health care normally seen in conventional warfare, these AFSOC providers must provide care in the most austere environments, often without the kind of support seen in conventional battlefields. Despite the need for such self-sufficiency, AFSOC medical capabilities must remain small and light, and capable of being deployed on short notice anywhere in the world.³ The Naval Health Research Center (NHRC) has used its method of medical modeling to create and update U.S. Marine Corps medical capabilities and Authorized Medical Allowance Lists (AMALs) since the mid-1990s. Like AFSOC, Marine Corps medical units must remain small, light, and flexible. ⁴ In 2004, the Air Force Medical Support Agency, Surgeon General Support Logistics Office requested that NHRC conduct a proof-of-concept study to assess the validity and feasibility of using its medical modeling tool in U.S. Air Force Allowance Standard (AS) development and management.⁵ Following the success of this proof-of-concept study, NHRC was tasked by the Air Force to model elements of its Expeditionary Medical System. In 2007, the Air Force asked NHRC to conduct another proof-of-concept study to demonstrate the benefits of modeling medical supply requirements for Special Operations missions using the AFSOC Rapid Response Deployment Kit (RRDK) as the prototype. #### Method The NHRC method of modeling medical supply requirements was developed to establish and/or review AMALs for various levels of care in the Navy and the Marine Corps. Its aim is to give clinicians in the field or the fleet the materiel they need to provide the best care possible, while still maintaining as small a logistical footprint as possible, in concert with current Navy and Marine Corps doctrine.⁴ It involves a four-step process that begins with the identification of likely patient types to be encountered by a particular type of medical treatment asset, including combat wounds, nonbattle injuries, and illnesses. Patient conditions (PCs) created for the Defense Medical Standardization Board (DMSB) Treatment Briefs are used for this purpose. (NHRC is currently in the process of matching these patient conditions to International Classification of Diseases codes. In the future, patient streams will be develop using either the DMSB patient codes or ICD-9 codes.) The PCs are then linked to clinical tasks developed by DMSB and NHRC. Those tasks are, in turn, linked to each supply item needed to complete the task. A patient stream drawn from historical combat data is created using any number of casualty estimation programs, including NHRC's FORECAS, SHIPCAS, and PKCAS software, or casualty data drawn directly from the Navy-Marine Corps Combat Trauma Registry maintained by NHRC.⁶ The required type and quantity of equipment and consumable supplies can then be calculated based on the probability of those PCs occurring in a patient stream. Figure 1 provides a basic representation of the NHRC modeling process. In this model, PC 166, a multiple injury wound, is being treated by an AFSOC RRDK at the Forward Emergency Care level of clinical capability (formerly Level 1B). The task profile shows the likely clinical tasks to be performed on this type of patient in that functional area, and the percentage of those patients expected to receive them. The "Equipment/Supplies" column identifies the items needed to complete the "Emergency Control of Hemorrhage" task at that level of capability. Not shown in this figure are additional data fields used to calculate supply quantities, including the amount of each supply needed to complete the task, how often the task will be repeated in the first 24 hours of treatment, how often the task will be repeated in each subsequent 24-hour period, and the average length of stay at that facility. #### [INSERT] Figure 1. Example of NHRC clinical requirements model. Once the database is created, it is then imported into NHRC's Estimating Supplies Program (ESP), a software program that provides logisticians and medical planners the ability to project their medical supply usages for a variety of expeditionary scenarios. This basic modeling method, often referred to simply as ESP, is also incorporated into two other NHRC software programs: the ReSupply Validation Program which helps create "push packages" for resupply; and the Tactical Medical Logistics Planning Tool, used by medical planners for course-of-action analysis. #### **RRDK Mission and Capabilities** RRDK capabilities are designed to reduce the impact of trauma, and disease and nonbattle injury (DNBI) on missions pursued by AFSOC and USSOCOM personnel. The RRDK deploys in support of AFSOC air squadrons and USSOCOM missions to austere locations to provide limited medical care and preventive medicine (PM). More specifically, RRDK capabilities include: - Clinical capability: Provides limited advanced trauma care and sick call for a population at risk (PAR) of 200-400 personnel, including special forces from other U.S. military branches and foreign militaries. Also provides limited PM practices such as environmental health site assessments. Modularized into four components (two advanced trauma modules, a medical module, and an environmental module) to allow flexibility in configuring the RRDK to individual mission requirements. - Endurance: Includes enough portable supplies to maintain its clinical capability for 30 days without resupply. - Limitations: Is not self-sufficient. Requires provision of base operating support from host unit and/or shelter of opportunity. Patient holding is limited to a maximum of 12 hours, with an average - Manpower: Includes one flight surgeon and two independent duty medical technicians, known as the Special Operations Forces Medical Element.⁷ The RRDK usually deploys with a second AS designed for casualty evacuation (CASEVAC). Though separate from the RRDK AS, many clinical tasks performed by the RRDK require equipment contained in the CASEVAC AS. These items were included in this study's modeling efforts, an example of how ESP can identify items required for interoperability and standardization. #### **RRDK Clinical Tasks** RRDK subject matter experts (SMEs) were presented a list of clinical tasks usually performed at the Emergency Forward Care level of care, and asked to identify which tasks they were required to accomplish in the performance of their duties. Eighty-four clinical tasks were identified (see Table 1). Table 1. Rapid Response Deployment Kit Clinical Tasks | Task | Task Description | Task | Task Description | | | |------|---|-------|---|--|--| | No. | | No. | <u> </u> | | | | 001 | Triage | 127 | Patient Restraint (Gauze, Ties) | | | | 002 | Assessment And Evaluation Of Patient Status | 129 | Perform Restrained Patient Control | | | | 005 | Remove And Collect Belongings,
Valuables And Equipment | 142 | Order And Document Appropriate Meds/Treatment | | | | 006 | Establish Adequate Airway (Oro/Naso Pharyngeal Only) | 145 | Administer Appropriate Medication | | | | 007 | Emergency Cricothyroidotomy | 151 | Gynecological Examination | | | | 010 | Neurological Assessment | 204 | Provide Patient Safety Special Watch | | | | 011 | Stabilize Spine (Collar/Spine Board) | 221 | Pericardiocentesis | | | | 017 | Suction (Oral/Trach/Endo) | 244 | Hemacult Test- Feces/Emesis/Gastric
Suction | | | | 019 | Emergency Control Of Hemorrhage | 245 | Urine Testing | | | | 022 | O2 Administration Setup | 247 | Place In Respiratory Isolation | | | | 023 | O2 Administration Continuous (Nasal/Mask) | 248 | Force Fluids | | | | 024 | Vital Signs | 278 | Arrange For Patient Evacuation | | | | 032 | Set-Up Pulse Oximeter | 279 | Arrange And Document Return To Duty | | | | 038 | Maintain On Ventilator | 280 | Patient Discharge Instructions | | | | 044 | Setup Drainage Bottles/Pleurevac | 359 | Induce Local Anesthesia | | | | 046 | Maintain Chest Tube Suction | 453 | Closed Reduction Of Dislocation | | | | 049 | Start/Change IV Infusion Site | 639 | Pregnancy Determination - Hcg | | | | 050 | Administer IV Fluid | 740 | Reduce Dislocation | | | | 063 | Venous Cutdown* | 748 | Assemble Material/Clean Up | | | | 068 | IV Infusion Terminate | 802 | Initial/Subsequent Non-Surge Debride Of
Burn Or Open Wound | | | | 070 | Bowel Sounds Assess | 999 | Morgue Care | | | | 071 | Insert Ng/Og Tube | A6 | Apply Tourniquet | | | | 073 | Perform Ng/Og Suction | A12 | Occlude Sucking Chest Wound | | | | 075 | Irrigate Ng/Og Tube | A30 | Wet/Cold Injury Therapy | | | | 076 | Gastric Lavage | A6 | Apply Tourniquet | | | | 079 | Catheterization, Foley | D2940 | Analgesic Filling [†] | | | | 082 | Measure/Record Intake/Output | Z014 | Intubation | | | | 085 | Wound Irrigation | Z027 | Cardio Arrest Resuscitation | | | | 086 | Clean And Dress Wound | Z030 | Electronic Monitoring Of Patient Vital
Signs (Propag) | | | | 092 | Apply Ace Bandage | Z037 | Bag Valve Mask Setup | | | | Task
No. | Task Description | Task
No. | Task Description | |-------------|---|-------------|---| | 093 | Extremity Elevation | Z039 | Perform Ventilation With Bag Valve
Mask | | 096 | Apply Sling | Z042 | Insert Chest Tube | | 098 | Apply Splint/Immobilize Injury | Z045 | Change Drainage Bottles/Pleurevac | | 103 | Circulation Check | Z083 | Expose Patient For Exam | | 108 | Minor Surgical Procedure
(Debride/Suture/Incision) | Z094 | Extremity Traction, Application/Adjust | | 110 | Test Vision | Z103 | Re-Establish IV Access (Intraosseous) | | 121 | Eye Irrigation | Z277 | Prepare For Evac Ground/Air | | 123 | Eye Care (Dressings/Eye Patch) | ZZ02 | Stain Eyes (Fluorescein Stain/Woods Uv
Lamp) | | 124 | Ear Care Irrigation | ZZ03 | Needle Thoracostomy | | 125 | Sponge/Hyperthermia Treatment | ZZ51 | Clean And Prepare Instruments | | 126 | Seizure Care/Precautions | ZZ58 | Pressure Infuse Resuscitative Fluids (Equipment Task) | ^{*}Rarely performed in the field, but a required skill for RRDK flight surgeons. When modeling medications, the primary source for determining which drugs and dosages to use with which PCs was the Joint Special Operations Tactical Medical Emergency Protocol Drug List.⁸ This was supplemented with USSOCOM's Tactical Medical Emergency Protocols,8 and the Special Operations Forces Medical Handbook. The drug reference database provided by WebMD's Medscape Today Web site was also consulted.¹⁰ #### **RDDK Patient Stream** With its mission to provide health care support for trauma and DNBI at the "pointy end of the spear" in every combatant command region, the RRDK is exposed to a large list of possible PCs. In teleconferences and a personal meeting, RRDK SMEs were asked to identify PCs representing patients they believed they were likely to encounter, and initiate stabilizing treatment for, while deployed. A total of 315 PCs were chosen. Table 2 shows the patient categories into which those 315 PCs fall. Table 2. Rapid Response Deployment Kit Patient Conditions by Category | Patient Category | Patient Category | | | |-----------------------------------|------------------------------|--|--| | Abdomen & Pelvis | Infectious/Parasitic | | | | Battle Fatigue | Lower Limbs | | | | Burns | Miscellaneous | | | | Cardiovascular | Multiple Injury Wounds | | | | Dermatological | Neuropsychiatric | | | | Directed Energy Weapon Eye Lesion | Respiratory | | | | Environmental | Sexually Transmitted Disease | | | | Eye/Ear Disease | Spine | | | | Female Specific | Sprains & Strains | | | | Gastrointestinal | Superficial/Soft Tissue | | | | General | Surgical | | | | Genitourinary | Thorax | | | | Head | Upper Limbs | | | [†]Emergency dental care. Developing a patient stream for this study was problematic because data on casualties among SOF are typically classified, particularly those incurred during covert operations. Therefore, no actual RRDK patient data were available for this study. However, the little amount of data published on SOF casualties indicates Special Operations Forces suffer a disproportionately high rate of casualties. Many Special Operations missions, such as reconnaissance and direct raids, while cloaked in stealth and secrecy, can erupt into sharp periods of intense combat. A 1995 Naval Postgraduate School modeling study of SOF attrition rates during such missions found a sharp climb in SOF casualties the longer a Special Operations unit remains in contact with an enemy, particularly during daytime raids. 11 According to the Special Operations Warrior Foundation, a charity for the surviving children of operators killed in the line of duty, between 1980 and 2004 SOF warriors represented about 2% of all active-duty forces, yet accounted for 24% of all combat losses, a casualty rate 12 times higher than conventional forces (personal communication, S. McLeary, January 1, 2004). Table 3 breaks down the SOF casualties suffered during several major contingency operations. Table 3. Special Operations Forces KIAs vs. Conventional Force KIA, 1984–2004 | Contingency Operations | Country | Total U.S.
KIA | SOF
KIA | SOF %
KIA | |--------------------------------|-------------------|-------------------|------------|--------------| | Eagle Claw (Desert One) | Iran | 8 | 8 | 100% | | Urgent Fury | Grenada | 19 | 13 | 68% | | Just Cause | Panama | 23 | 13 | 57% | | Restore Hope/Task Force Ranger | Somalia | 29 | 18 | 62% | | Desert Storm | Kuwait &
Iraq | 147 | 25 | 17% | | Allied Force | Kosovo | 2 | 0 | 0% | | Enduring Freedom | Afg & Philippines | 51 | 49 | 96% | | Iraqi Freedom | Iraq | 314 | 15 | 5% | | Total | | 593 | 141 | 24% | KIA, killed in action; SOF, Special Operations Forces. Source: Special Operations Warrior Foundation. A 2007 study of SOF casualties by Col. John Holcomb et al., quantified the methods of injury leading to SOF deaths during Operations Enduring Freedom and Iraqi Freedom. Explosions (40%), gunshot wounds (27%), and aircraft accidents (27%) made up the bulk of the causes of death, resulting in a total of 67% wounded in action (WIA)¹² (see Figure 2). #### [INSERT] Figure 2. Causes of Special Operations Forces deaths. 12 For this study, NHRC reviewed data from the Career History Archival Medical and Personnel System (CHAMPS) representing SOF casualties evacuated from Afghanistan and Iraq in March 2002 and December 2006. Ninety-seven casualties were identified. Of these, the largest cause of injury was explosives (53%), followed by penetrating ballistic wounds (26%; identified as "war wound, enemy cause"), with total of 79% of injuries caused by combat action. Figure 3 provides a complete breakdown of these mechanisms of injury. [INSERT] Figure 3. Special Operations Forces mechanisms of injury, from CHAMPS database. While these statistics represent only the most severe casualties—those either killed or injured severely enough to require evacuation—they do indicate a higher ratio of combat-related injury to DNBI than experienced by conventional troops. Conventional forces, by comparison, suffer a nearly inverse proportion of DNBI to wounded in action (WIA) casualties. According to the Joint Patient Tracking Application (JPTA), a total of 77,240 casualties from all branches of the service were evacuated from Iraq and Afghanistan between 2004 and 2006. Of those, 80% were DNBIs, while only 20% were combat casualties. These data showed that the present study required a patient stream weighted more heavily with combat injuries than most casualty projection programs are designed to produce. NHRC's warfare casualty forecasting software, FORECAS, was selected for use based on its ability to modify both combat intensity and environments. Three patient streams were created:, one each for desert, jungle, and urban terrains, and each with a PAR of 300 (the average RRDK mission requirement) engaging in moderate combat for 30 days. As stated previously, Special Operations missions are usually characterized by sharp, intense periods of combat lasting a short duration but resulting in a disproportionately high casualty rate. After several experimental FORECAS patient stream runs, it was determined that a moderate level of combat over a 30-day period best reflected this disproportionality. The three patient streams were then aggregated. Averages were calculated for any PC appearing more than once, and then rounded to the nearest whole number. The resulting patient stream contained 97 patients, with 72% WIA and 28% DNBI. Figure 4 shows a comparison between the JPTA conventional forces casualties, the CHAMPS SOF casualties, and the NHRC patient stream. Figure 5 shows the patient category breakdown for the NHRC patient stream. [INSERT] Figure 4. Comparison of actual conventional and Special Operations Forces casualty types and the NHRC patient stream. [INSERT] Figure 5. Rapid Response Deployment Kit model patient stream by injury and disease. #### **Preventive Medicine Objectives and Tasks** Preventive medicine objectives (PMOs) are modeled with associated supplies and equipment, as depicted in Figure 6. Task frequencies are largely dependent on PAR size and the inherent disease risk for a given area of operations. Modeling assumptions for this study included deploying with a complement of 300 personnel for a 30-day period in an operational setting with minimal host-country infrastructure and preventive medicine. #### [INSERT] Figure 6. Preventive medicine objectives and tasks model. Nine PMOs were identified for the RRDK (Table 4), requiring a total of 31 PM tasks. However, at this far-forward level of care, many of these tasks are simply visual, requiring no equipment or consumables. PM supply quantities were calculated using a PM task frequency chart originally developed by NHRC for determining PM supply quantities for the Air Force's Global Reach Laydown (GRL) system, a similar Forward Emergency Care medical and PM capability (see Table 5).¹³ **Table 4. RRDK Preventive Medicine Objectives** | PMO# | Objective Description | | | |------|------------------------------|--|--| | 950 | Water Sanitation | | | | 951 | Pest Control | | | | 952 | Heat/Cold Injury Prevention | | | | 953 | Communicable Disease Control | | | | PMO# | Objective Description | | | |------|------------------------|--|--| | 954 | Food Sanitation | | | | 955 | Common Area Sanitation | | | | 956 | Berthing Sanitation | | | | 957 | Waste Management | | | | 958 | Conduct Training | | | | 959 | Industrial Hygiene | | | **Table 5. Preventive Medicine Objective Frequencies** | Task | k PM Task | | Weekly | Once | No.
of | |--------------|--|-------|--------|------|-----------| | No. | | Daily | | | Sites | | Z504 | Obtain Water Sample/Conduct Ph Testing* | 1 | | | 2 | | Z505 | Obtain Water Sample/Conduct Chlorine Testing | 1 | | | 2 | | Z506 | Obtain Water/Ice Sample/Conduct Bacteriological Testing [†] | | 13 | | 4 | | Z541 | Conduct Vector Borne Disease Assessment* | | 1 | | 1 | | Z548 | Conduct Pest And Vector Identification* | | 1 | | 1 | | Z580 | Monitor Heat Stress Conditions | 10 | | | 1 | | Z600 | Screen Treatment Logs For Infectious Disease Cases* | 1 | | | 1 | | Z607 | Conduct Food Borne Illness Investigation [‡] | | | 1 | 1 | | Z611 | Dispense Std Prophylaxis/Contraceptive | 1 | | | 1 | | Z640 | Select Site Of Messing & Food Storage Areas* | | | 1 | | | Z642 | Conduct Inspections Of Messing & Food Storage Areas | 1 | | | 1 | | Z644 | Evaluate Food Sourcing And Transport*,‡ | | | 1 | 1 | | Z660 | Make Recommendations For Camp Setup* | | | 1 | 2 | | Z661 | Conduct Inspections Of Common Use Areas | 1 | | | 1 | | Z662 | Conduct Inspections Of Laundry/Shower Services | 1 | | | 1 | | Z663 | Conduct Inspections Of Latrines/Handwashing Site | 1 | | | 1 | | Z680 | Select Berthing Site* | | | 1 | 1 | | Z681 | Conduct Inspections Of Berthing Areas | | 1 | | 1 | | Z700 | Assist In Selection Of Waste Disposal Sites | | | 1 | 2 | | Z701 | Conduct Inspections Of Waste Disposal Sites | | 1 | | | | Z790 | Document/Report Inspection Results* | | 1 | | 2 | | Z 791 | Make Recommendations/Troubleshoot Discrepancies*,‡ | 1 | | | 1 | | Z910 | Gather & Analyze Intel Data On Survey Area* | | | 1 | 2 | | Z911 | Conduct Visual Site Inspection And Record Results* | | | 1 | 2 | | Z912 | Develop Site Sampling Plan* | | | 1 | 2 | | Z913 | Map Out Site Inspection Grid* | | | 1 | 2 | | Z914 | Label & Record Sample Container | | | 1 | 50 | | Z918 | Collect & Interpret Ambient Air Sample* | | | 10 | 2 | | Z924 | Collect Soil Sample/Conduct Test 8* | | | 8 | 2 | | Z926 | Conduct Radiological Sampling/Monitoring* | | | 18 | 2 | | Z930 | Assessment Of Hazardous Waste* | | | 1 | 10 | *No supplies assigned this task. †Includes bottled water sampling; with a shipment of 1000 bottles/week, 10 samples are taken. The four sites are two potable water sources (one sample each), the bottled water storage area (10 samples), and any ice shipments (one sample). #### **Results** Of the 84 clinical tasks determined to be required by the RRDK mission, 15 did not occur in this patient stream (see Table 6). However, supplies sufficient to complete each of those 15 tasks at least one time were included in the final list. Because consumable supply quantities were rounded up to the nearest quarter package whenever possible, there should actually be enough supplies to complete each of these tasks more than once. **Table 6. Clinical Tasks Not Included in Patient Stream** | Task No. | Task Description | | | |----------|--|--|--| | 076 | Gastric Lavage | | | | 084 | Shave And Prep | | | | 124 | Ear Care Irrigation | | | | 148 | Obtain Specimen For Laboratory Analysis | | | | 151 | Gynecological Examination | | | | 740 | Reduce Dislocation | | | | 802 | Initial/Subsequent Non-Surg Debride Of Burn/Wound | | | | A10 | Position For Postural Drainage/Place In Coma Position* | | | | A30 | Wet/Cold Injury Therapy | | | | A2 | Remove Casualty From Danger* | | | | D2940 | Analgesic Filling | | | | Z108 | Facility Site Set Up | | | | ZZ01 | Induce Vomiting | | | *No supplies required for this task. During the modeling process, we discovered several medications that were identical in both formula and dosage, but were included under two or more different National Stock Numbers (NSNs) (see Table 7). Some of this may be due to logistical ordering errors. In other cases, multiple NSNs may have been chosen to allow distribution among RRDK modules. For this study, only one NSN was modeled for analysis, though all NSNs will be included in the final model unless otherwise instructed by AFSOC. However, should AFSOC decide to single up on these items, using the NSNs modeled for Bisacodyl, Erythromycin, and Moxifoxacin is recommended because the packaging for these NSNs is best suited for distribution among RRDK modules. **Table 7. Medication in RRDK Allowance Standard With Multiple NSNs** | NSN | Nomenclature | |---|--| | 6505008899034 | Bisacodyl Tablets USP 5mg Film Enteric 1000S | | 6505001182759 | Bisacodyl Tablets USP 5mg I.S. Tablet 100S* | | 6505010835988 Erythromycin Stearate Tablets USP 250mg 100S* | | | 6505006041223 | Erythromycin Tablets USP 250mg 100S | | 6505015034772 Moxifloxacin Hydrochloride Tablets 400mg (5/Strip) 30S* | | | 6505015163194 | Moxifloxacin Hydrochloride Tablets 400mg 50S | | 6505014622434 Sodium Chloride Injection USP 0.9% 500ml Bag 24S* | | | 6505013306268 | Sodium Chloride Injection USP 0.9% 500ml Bag 24S | [‡]Tasks performed on an "as needed" basis. | NSN | Nomenclature | |---------------|--| | 6505013723425 | Sodium Chloride Injection USP 0.9% 500ml Bag 24S | *Modeled for this study. When possible, in computing consumable supply quantities, all line items are rounded to the nearest quarter package. This not only provides logistics units an easier means of packing assemblages, it also ensures a more robust AS. Nevertheless, modeling the RRDK using NHRC's ESP model achieved a greater than \$10,000 cost savings, mostly in medications. A modest 4.7% savings was achieved in cube, while weight increased by less than 22.5 pounds (see Table 8). Table 8. Reductions, Increases in Weight, Cube and Cost | | Weight (lbs) | Cube (ft) | Cost | |--------------|--------------|-----------|-------------| | Current RRDK | 884.13 | 1459.67 | \$92,680.80 | | ESP RRDK | 906.60 | 1390.38 | \$82,392.80 | | Delta (%) | 2.50 | -4.70 | -11.10 | #### **Discussion and Comment** NHRC's method of modeling clinical supply requirements has been used successfully to analyze conventional force medical supplies for the Navy, Marine Corps, and Air Force. Modeling medical requirements for an unconventional force posed particular difficulties. SOF missions, and casualties incurred on those missions, are typically classified information. Few data are available to develop statistical casualty forecasting software. Nevertheless, the information that is available on SOF casualties indicates Special Operations units suffer a disproportionately higher ratio of combat casualties to DNBIs. This study was able to develop a patient stream simulating that disproportionality using the conventional warfare casualty project program, FORECAS. Exporting ESP capabilities to inventories other than those of the Navy and Marine Corps is a viable method of evaluating other preexisting medical systems' capabilities. In previous efforts, the inventories for the Air Force Mobile Field Surgical Team and the Critical Care Air Transport Team have been successfully incorporated in ESP. The Rapid Response Deployment Kit will be included in ESP as well, giving AFSOC planners a greater capability to configure the RRDK to mission particulars. ESP and its family of logistics programs are also highly effective tools for configuring resupply packs, ensuring medical materiel sustainment across the spectrum of medical care facilities, while maintaining their clinical capability. ESP also creates an audit trail establishing clinical requirements for supply items in medical system inventories that enable logisticians and medical planners to validate current inventories and perform analyses of projected changes to future inventories. It also serves as a leading consumption indicator, making it easier to identify resupply requirements to ensure sustainment. Finally, military medicine is destined to become more "purple," at least logistically. ESP is already used to help the Marine Corps standardize equipment and consumables among its more than two dozen AMALs. With ESP's widespread use by the Marines, Navy and Air Force, it can now provide greater visibility for standardizing medical inventories not only within the individual services themselves, but between them as well. Many special operations missions are conducted as single-service operations, yet they routinely require support from SOF units from other military branches. A key area of jointness in special ops is medical.¹⁴ NHRC's method of modeling medical requirements can help special operations medical units standardize their inventories to ensure wounded operators receive the best treatment throughout the continuum of care. #### References - 1. Force Health Protection Support for Army Special Operations Forces. FM 4-02.43 ed: Department of the Army; 2006. - 2. Fact Sheet: Air Force Special **Operations** Command. Web Site] http://www2.afsoc.af.mil/library/. - 3. Dougherty JJ. Operational Medical Support For The Tip Of The Spear: The Heart Of Air Force Special Operations Forces Medicine Aerospace Power Journal Winter 2001; Volume XV(No. 4). - 4. Galarneau MR, Konoske PJ, Emens-Hesslink KE, Pang G. Reducing the Logistical Footprint of Forward Resuscitative Surgical Units Using a Patient-Driven Model of Clinical Events. San Diego, CA: Naval Health Research Center; 1998. 98-1. - 5. Nix RE, Onofrio K, Konoske PJ, Galarneau MR, Hill M. The Air Force Mobile Forward Surgical Team (MFST): Using the Estimating Supplies Program to Validate Clinical Requirements. San Diego, CA: Naval Health Research Center; 2004. No. 04-34. - **6.** Blood CG, Zouris JM, O'Donnell ER, Rotblatt D. Using the Ground Forces Casualty Forecasting System (FORECAS) to Project Casualty Sustainment, San Diego, CA: Naval Health Research Center; 1997. 97-39. - Air Force Tactics, Techniques, and Procedures 3-42-6: USAF Medical Support for 7. Special Operations Forces: U.S. Air Force; 2001. - Joint Special Operations Tactical Medical Emergency Protocol Drug List. Journal of 8. Special Operations Medicine. Winter 2007;7(1):77-108. - 9. Whitlock W, Yevich S, Broadhurst R, Thompson GD, Redmond P, Packard R, eds. Special Operations Forces Medical Handbook. MacDill Air Force Base, FL: U.S. Special Operations Command; 2001. - **10.** Medscape Today Jan - April 2008; http://www.medscape.com/medscapetoday. - Wilson GR. Modeling and Evaluating U.S. Army Special Operations Forces Combat 11. Attrition Using Janus(A). Monterey, CA: Naval Postgraduate School; 1995. - **12.** Holcomb JB, McMullin NR, Pearse L, et al. Causes of Death in U.S. Special Operations Forces in the Global War on Terrorism: 2001-2004. Annuals of Surgery. June 2007;245(6):986-991. - **13.** Nix RE, Hill M, Onofrio K, Konoske PJ, Galarneau MR. The Air Force Global Reach Laydown: Using the Estimating Supplies Program to Validate Clinical Requirements. San Diego, Ca: Naval Health Research Center; 2005. No. 06-05. - 14. Doctrine for Joint Special Operations, Joint Publication 3-05. Washington, DC: Joint Chiefs of Staff, Department of Defense; 2003. #### **Author Bios** Martin Hill is a research analyst in expeditionary medical capabilities for the Naval Health Research Center in San Diego, CA. Mr. Hill is a certified homeland security specialist, with 19 years of reserve military service in Coast Guard Search and Rescue (SAR) and counternarcotics operations, and a Navy counterinsurgency unit. He is currently a state Medical Service Corps officer attached to the California National Guard 40th Infantry Brigade Combat Team. He has also served as both a tactical and rescue medic with the San Diego County Sheriff Search and Rescue detail, and is a medic and security specialist with a federal Disaster Medical Assistance Team. Ralph Nix has a master's degree in Clinical Psychology from National University. He was a Navy hospital corpsman for 23 years. He has numerous operational deployments, primarily with the Marine Corps ashore and afloat, including as a member of the 31st Marine Expeditionary Unit, Maritime Special Purpose Force. Mr. Nix has worked in the Modeling and Simulation Department at the Naval Health Research Center since 2003. Curt Hopkins, Naval Health Research Center research analyst, retired from the Navy after 30 years as a Master Chief Hospital Corpsman. He served in both Vietnam and Desert Storm as a combat corpsman with the Marine Corps, but spent most of his career in the submarine service as an independent duty corpsman and as chief of the boat aboard attack submarines. Gerry Pang is a computer specialist whose responsibilities at the Naval Health Research Center include both hardware and software support for research and development of medical information systems, health care products, and modeling simulations for the U.S. Navy Fleet Marine Force. Mr. Pang designs, develops, debugs, evaluates, analyzes, and implements new medical software, and provides database and programming support for research projects. Paula Konoske received her doctorate in social psychology from Wayne State University, Detroit, MI. Prior to coming to the Naval Health Research Center in 1994, she was a research psychologist at the Navy Personnel Research and Development Center, San Diego. Her research experience includes design of interactive technical training, survey design and development, program evaluation, Total Quality Leadership implementation, and the application of statistical process control. Dr. Konoske is currently the Program Manager for the Modeling and Simulation Group. Dr. Konoske has authored numerous technical reports and journal publications as well as presented research results at professional meetings and conferences. #### **Learning Objectives** - 1. Understand the use of modeling in determining medical supply requirements for military operations. - 2. Understand how modeling provides an audit trail from the types of illness or injury to each inventory line item. - 3. Understand the importance of current casualty data for modeling efforts. #### Questions - 1. Modeling medical supply requirements ensures clinicians: - a) Do not spend over their budgets. - b) Get the proper type and amount of medical equipment and supplies they need. (Answer) - c) Know what each piece of equipment does and how it is used. - d) Are restricted to only those supplies authorized by military leaders. - 2. Historical data of combat injuries are used to determine: - a) Which service members will get higher combat pay. - b) When to send a medic or a qualified doctor with a patrol. - c) The best way to perform surgical procedures under austere field conditions. - d) Likely patient types to be encountered under different battle conditions. (Answer) - 3. NHRC's study of the AFSOC Rapid Response Deployment Kit medical inventory: - a) Showed that NHRC's method of modeling medical requirements can be used to determine clinical needs for Special Operations units. (Answer) - b) Showed that modeling can be used to thwart terrorist attacks. - c) Suggested we are terribly unprepared for another Al-Qaida attack. - d) Indicated AFSOC requires additional doctors and corpsmen. - 4. The AFSOC Rapid Response Deployment Kit mission is to: - a) Provide immediate, frontline basic trauma care to conventional forces. - b) Respond immediately to a mass casualty incident in an urban environment. - c) Provide limited advanced trauma and sick call care, as well as basic preventive medicine measures, in an austere environment. (Answer) - 5. Modeling medical requirements: - a) Can determine a capability's medical requirements without input from providers or logisticians. - b) Is the same no matter what type of medical capability you model. - c) Requires knowledge of the specific capability's mission requirements, and input from experienced providers. (Answer) - d) Requires large amounts of balsa wood, a small sharp knife, and glue. - 6. SOF casualties differ from conventional force casualties because: - a) SOF soldiers rely on stealth and guile. - b) There are more conventional forces than Spec Ops forces, they suffer a higher ratio of battle casualties to nonbattle casualties. - c) Spec Ops troops suffer a disproportionately higher ratio of battle to nonbattle casualties compared with conventional forces. (Answer) - 7. Modeling preventive medicine supplies requires knowing: - a) Whether sanitation measures will require a slit trench or Port-a-John. - b) What preventive medicine objectives must be performed, how often they must be performed, and at how many sites they must be performed. (Answer) - c) Whether service members are getting proper food and exercise. - 8. True or false: Using modeling to determine required clinical supplies is especially important for units that must remain small, light, and flexible. - a) True (Answer) - b) False - 9. In addition to knowing what type of casualties can be expected, modeling medical requirements involves such factors as: - a) Pay grade for all providers. - b) The required skill levels of providers, how long patients will remain at the treatment facility, and how long the facility is expected to operate without resupply. (Answer) - c) Board certification of all providers, and the states in which they are allowed to practice. - d) Which branch of the service is involved, their overall medical command, and their budget for medical resources. - 10. Medical modeling is: - a) A way to tell medical providers how to practice medicine. - b) A means to second guess physicians. - c) Another tool in the tool box in the development of medical capabilities and for mission planning. (Answer) - d) A type of video game involving medical decisions designed to train providers. PC 166, a multiple injury wound involving penetrating wounds to the chest and kidney | PC | Capability of Care | Functional | Task | Supplies 100 100 100 100 25 100 Sponge Surgical Cellulose, Cotton, Gauze 4X4 Pad ABD 7.5X8 White 3 Layers Sterile 240S Dressing Pressure Cotton 7.5X8 Sterile Latex-free Dressing Pressure Cotton 11X11 Sterile latex-free Tape Adh Surgical 198X2 White Hypoallergenic Triage Assess Patient O2 Set Up O2 Admin Thoracostomy Emergency Control of Hemorrhage Needle CCATT FFCU SPEARR RRDK FFPED **FFCCU** 001 002 003 166 167 Emergency Forward Theater ▲Forward Care Resuscitative Hospitalization Definitive Care #### Mechanisms of Injuries SOF Deaths OIF/OEF 2001-2004 n = 82 ## SOF Mechanism of Injury March 2002 to December 2006 Afghanistan and Iraq n = 97 - AIR ACCIDENT - ATHLETIC INJURY - □ COMPLICATIONS FROM TREATMENT. - ☐ FALLS AND OTHER MISC ACCIDENTS - EXPLOSIVES - LAND TRANSPORT ACCIDENT - MACHINERY, TOOL ACCIDENT - ■WAR WOUND, ENEMY CAUSED - ■WAR WOUND, FRIENDLY FIRE ## Comparison of Actual Conventional and SOF Casualty Types to NHRC Model Patient Stream AFSOC RRDK Modeling Patient Stream by Injury and Disease Type n = 97 | РМО | Capa-
bility | Functional
Area | Task | Task Freq
for 30 Days | Equipment/Supplies | |-----|-----------------|------------------------|---|--------------------------|--| | 950 | ~ | | Test Water for Coliforms | 52 | Bag water sample polyethylene
Water sampling test reagent
coliform 200S | | 951 | | | Test Water
for
Chemicals | → 4 → | Water testing kit
bacteriological
Comparator Color: Hydrogen
ion & residual chorine | | 952 | RRDK | Sick Call | Habitability
Survey | 4 L | Y | | 953 | - / | | Air Sampling | 20 | | | 954 | - | | Monitor Heat
Conditions | 300 | | | 955 | Ţ | Preventive
Medicine | Screen
Treatment
Logs for
Infectious
Diseases | 30 | | #### RRDK Current Cost vs. ESP Cost Estimate ## RRDK Weight and Cube: Current vs. ESP Estimate 1600.00 #### REPORT DOCUMENTATION PAGE The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB Control number. PLEASE DO NOT RETURN YOUR | TORNI TO THE ABOVE ADDRESS. | | | |--|--|--| | 1. Report Date (DD MM YY)
30 07 08 | 2. Report Type
Journal submission | 3. DATES COVERED (from - to)
November 2007 — April 2008 | | 4. TITLE AND SUBTITLE Using Modeling to Predict Missions | Medical Requirements for Special Operation | 5c. Program Element: | | 6. AUTHORS
M. Hill, P. Konoske, G. Pa | ng, R. Nix, C, Hopkins | 5d. Project Number: 5e. Task Number: | | 7. PERFORMING ORGANIZATION
Naval Health Research C
140 Sylvester Rd.
San Diego, CA 92106-35 | enter | 5f. Work Unit Number: 63706N-M0095-60334 | | | GENCY NAMES(S) AND ADDRESS(ES) Commander | 9 PERFORMING ORGANIZATION REPORT
NUMBER
08-9I | | 503 Robert Grant Ave
Silver Spring, MD 20910-7 | P.O. Box 240 | 10. Sponsor/Monitor's Acronyms(s) NMRC/NMSC 11. Sponsor/Monitor's Report Number(s) | #### 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. #### 13. SUPPLEMENTARY NOTES This is a peer-reviewed journal submission. Do not cite, quote, or release until publication. #### 14. ABSTRACT (maximum 200 words) The objective of this study was to show the benefits of modeling clinical supply requirements for Special Operations missions by providing an analysis and validation of the Air Force Special Operations Command Rapid Response Deployment Kit (RRDK) Allowance Standard. This study identified several instances of multiple National Stock Numbers being used to order the same medication or supply, adding unnecessary cost and additional work for logisticians. The resulting quantities determined by the NHRC model lowered the cost of the RRDK by more than \$10,000, along with a minor drop in cube. NHRC's method of modeling clinical supply requirements has been used successfully to analyze conventional force medical supplies for the Navy, Marine Corps, and Air Force. Modeling medical requirements for an unconventional force posed particular difficulties. Special Operations Forces (SOF) missions, and casualties incurred on those missions, are typically classified information. Few data are available to develop statistical casualty forecasting software. Nevertheless, the information that is available on SOF casualties indicates Special Operations units suffer a disproportionately higher ratio of combat casualties to nonbattle injuries or disease. This study was able to develop a patient stream simulating that disproportionality using the conventional warfare casualty project program, FORECAS. #### 15. SUBJECT TERMS U.S. Air Force, Special Operations | 16. SECURITY CLASSIFICATION OF: | | | 17. LIMITATION | 18. NUMBER | 19a. NAME OF RESPONSIBLE PERSON | |---------------------------------|-----------------------|----------------------|----------------|------------|---| | a. REPORT | a. REPORT b. ABSTRACT | b. THIS PAGE
UNCL | OF ABSTRACT | OF PAGES | Commanding Officer | | UNCL UNCL | | | UU | 13 | | | | UNCL | | | | 19b. TELEPHONE NUMBER (INCLUDING AREA CODE) | | | | | | | COMM/DSN: (619) 553-8429 |